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New Designs for New Applications

I Some design choices that were sensible for classical
applications are suboptimal for a range of new applications.

I Implementation properties are comlex, but linear operations
come often almost for free whereas the bottleneck are
nonlinear operations.

I Multi-party computation (MPC)
I Fully homomorphic encryption (FHE)
I Zero-knowledge proof systems like SNARKs or STARKs
I Quantum-resilient public-key signature

I A main goal in the design of suitable
ciphers/permutations/hash functions is to minimize the
number of multiplications.

I Examples of such designs include LowMC, Kreyvium, Flip,
MiMC and Rasta.
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LowMC Description
I First design proposed at Eurocrypt 2015 [Albrecht et al. 15].

I Allows to create suitable instances for a wide range of
applications, e.g. used for a signature scheme currently under
consideration in round 2 of the NIST PQ process.

I Round function:

I Using partial non-linear layers
I Using 3× 3 Sbox with algebraic degree 2.
I Linear layers are binary invertible matrices that are chosen

independently and uniformly at random.
I Round key is generated by a randomly chosen multiplication of

a full-rank b × k with the master key.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

4 / 14



LowMC Description
I First design proposed at Eurocrypt 2015 [Albrecht et al. 15].
I Allows to create suitable instances for a wide range of

applications, e.g. used for a signature scheme currently under
consideration in round 2 of the NIST PQ process.

I Round function:

I Using partial non-linear layers
I Using 3× 3 Sbox with algebraic degree 2.
I Linear layers are binary invertible matrices that are chosen

independently and uniformly at random.
I Round key is generated by a randomly chosen multiplication of

a full-rank b × k with the master key.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

4 / 14



LowMC Description
I First design proposed at Eurocrypt 2015 [Albrecht et al. 15].
I Allows to create suitable instances for a wide range of

applications, e.g. used for a signature scheme currently under
consideration in round 2 of the NIST PQ process.

I Round function:

I Using partial non-linear layers
I Using 3× 3 Sbox with algebraic degree 2.
I Linear layers are binary invertible matrices that are chosen

independently and uniformly at random.
I Round key is generated by a randomly chosen multiplication of

a full-rank b × k with the master key.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

4 / 14



LowMC Description
I First design proposed at Eurocrypt 2015 [Albrecht et al. 15].
I Allows to create suitable instances for a wide range of

applications, e.g. used for a signature scheme currently under
consideration in round 2 of the NIST PQ process.

I Round function:
I Using partial non-linear layers

I Using 3× 3 Sbox with algebraic degree 2.
I Linear layers are binary invertible matrices that are chosen

independently and uniformly at random.
I Round key is generated by a randomly chosen multiplication of

a full-rank b × k with the master key.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

4 / 14



LowMC Description
I First design proposed at Eurocrypt 2015 [Albrecht et al. 15].
I Allows to create suitable instances for a wide range of

applications, e.g. used for a signature scheme currently under
consideration in round 2 of the NIST PQ process.

I Round function:
I Using partial non-linear layers
I Using 3× 3 Sbox with algebraic degree 2.

I Linear layers are binary invertible matrices that are chosen
independently and uniformly at random.

I Round key is generated by a randomly chosen multiplication of
a full-rank b × k with the master key.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

4 / 14



LowMC Description
I First design proposed at Eurocrypt 2015 [Albrecht et al. 15].
I Allows to create suitable instances for a wide range of

applications, e.g. used for a signature scheme currently under
consideration in round 2 of the NIST PQ process.

I Round function:
I Using partial non-linear layers
I Using 3× 3 Sbox with algebraic degree 2.
I Linear layers are binary invertible matrices that are chosen

independently and uniformly at random.

I Round key is generated by a randomly chosen multiplication of
a full-rank b × k with the master key.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

4 / 14



LowMC Description
I First design proposed at Eurocrypt 2015 [Albrecht et al. 15].
I Allows to create suitable instances for a wide range of

applications, e.g. used for a signature scheme currently under
consideration in round 2 of the NIST PQ process.

I Round function:
I Using partial non-linear layers
I Using 3× 3 Sbox with algebraic degree 2.
I Linear layers are binary invertible matrices that are chosen

independently and uniformly at random.
I Round key is generated by a randomly chosen multiplication of

a full-rank b × k with the master key.

S(a, b, c) = (a ⊕ bc, a ⊕ b ⊕ ac, a ⊕ b ⊕ c ⊕ ab)

4 / 14



LowMC Cryptanalysis and Impact

I 2012-2015: Authors provide analysis with a large variety of
techniques. Given block size (b), allowable data complexity
D, and number of Sboxes per round (m), a ’v0 round
formular’ (r) is provided to allows to create instances for any
desired security level.

I Observations by Khovratovich, Leurent led to v1 (Eurocrypt
2015)

I Attacks by Dobraunig, Eichlseder and Mendel, and Dinur, Liu,
Meier and Wang led to v2 (eprint 2016).

I Our new cryptanalysis led to v3 (github 2017).

LowMCv3 is used in all applications we are aware of, e.g Picnic
signature scheme (Zaverucha et al., CCS 2017), group signature
schemes (Boneh et al., Derler et al.), or a protype Signal ’plugin’
for private contact discovery.
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Overview of Previous Techniques

I Meet-in-the-middle cryptanalysis requires extremely limited
data and it is almost independent of inner components.

I But it is applicable to the ciphers with weak key schedule.
I Differential cryptanalysis is usually applicable on any round

functions [Biham Shamir 90].

I But there exists a lower bound for active S-boxes, since it is a
well-known cryptanalysis.

I Truncated differential MITM cryptanalysis take advantage of
positive properties in both methods. [Demirci et al. 09]

I But it strongly depends on the properties of the linear layer.

This Work
Exploit previous ideas to take advantage of the positive properties
and overcome the limitations!
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Overview of the Technique
I Divide the cipher into three consecutive parts r1, r2 and r3.

I Select an input difference ∆in so that the output difference
after r1 rounds can be determined with a probability of one.

I Ask oracle to provide the corresponding ciphertexts of
P,P ′ = P ⊕∆in.

I Create a list of all reachable output differences after r2 rounds.
I Create a list of all reachable differences over the last r3 rounds.
I If these lists are significantly smaller than the set of all possible

output differences, we can obtain the difference in the middle.
I Repeat the procedure to find all intermediate differences.

Rounds
1 to r1

Rounds
r1 + 1 to r1 + r2

Rounds
r1 + r2 + 1 to r

Rounds
1 to r1

Rounds
r1 + 1 to r1 + r2

Rounds
r1 + r2 + 1 to r

∆in ∆r1

Pr[∆in → ∆r1 ] = 1

∆r1+r2 ∆r

Meet-in-the-middle
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First Part

I To have deterministic differential characteristic, all Sboxes
should be passive.

Deterministic Differential Characteristic
On average for LowMC, there exist 2b−3.m.R deterministic
differential characteristics over R rounds, i.e.
|{∆in ∈ Fb

2 |Pr[∆in → LR ◦ · · · ◦ L1(∆in)] = 1}| = 2b−3.m.R .

I We can cover r1 =
⌈

b
3·m

⌉
− 1 rounds.
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Estimating the Number of Reachable Differences
Possible of differences for one Sbox
For a bijective 3-bit Sbox each non-zero difference ∆in ∈ F3

2 can
transfer to at most 22 different differences.

Number of Differences
The number of possible differences in the output of the R-th round
of LowMC is almost 22.(m.R), i.e.
|{∆′|Pr [∆→ ∆′] > 0}| = 22.(m.R).

Time complexity

22·m·r2 + 22·m·r3 < 2k

To Avoid Wrong Collision

22·m·(r2+r3) < 2b → r2 + r3 <
b

2 ·m

I How can we overcome this limitation?
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From Differential to Polytopic

d-differences
A d-difference is the ordered tuple of the respective differences,
i.e., (x1 ⊕ x0, . . . , xd ⊕ x0). [Tiessen 14]

Possible of d differences for one Sbox
The number of reachable d-differences over the 3-bit S-box for a
non-zero input d-difference is at most 23.

Estimating the Number of Reachable Differences
Simple upper bound on the number of reachable d-differences after
r rounds is 23·m·r .

Condition to Avoid Wrong Collision

23·m·(r2+r3) < 2b·d → d >
3 ·m · (r2 + r3)

b
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Key Recovery

Definition
An Sbox S : {0, 1}n → {0, 1}n is called to be differentially
δ-uniform if for any (α, β) ∈ (Fn

2 × Fn
2), we have:

|{x ∈ {0, 1}n : β = S(x)⊕ S(x ⊕ α)| ≤ δ

Key candidates
We expect to have at most 2m.x solutions for the quadratic
(X I

r ,X
′I
r ,XS

r , ,X
′S
r ), since each Sbox is differentially 2x -uniform.

Each solution uniquely suggests a candidate for the round key skr
as follows:

C ⊕ skr = XL
r = L(XS

r )→ skr = C ⊕ L(XS
r )
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Results

Cipher Specification Attack Details
Block S-boxes Data Key Rounds Dimension r0 r1 r2 Time Complexity Data

n m D k r d bn−log2 d
3·m c b r−r0

2 c d r−r0
2 e 2 · (δr1

d + δr2
d ) 2(d + 1)

128 1 16 256 158 4 41 58 58 2164.9 10
128 5 16 256 37 4 8 14 15 2212.75 10
256 1 8 256 243 2 85 79 79 2223 6
256 5 8 256 53 2 17 18 18 2254.9 6
512 1 8 256 413 1 170 121 121 2226.6 4
1024 1 8 512 758 1 341 208 209 2389.9 4

I Several low-data instances of LowMCv2 can be broken
significantly faster than exhaustive search.

I The type of instance that is vulnerable (few Sboxes per
round) are used e.g. in post-quantum signature schemes.
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Conclusions

I New representation for the block ciphers with partial
non-linear layer.

I A new insight into the security evaluation of block ciphers
with a partial non-linear layer by presenting a new
cryptanalytic technique.

I Best results for some versions of LowMC. Led to a new round
’formula’ v3.

14 / 14



Conclusions

I New representation for the block ciphers with partial
non-linear layer.

I A new insight into the security evaluation of block ciphers
with a partial non-linear layer by presenting a new
cryptanalytic technique.

I Best results for some versions of LowMC. Led to a new round
’formula’ v3.

14 / 14



Conclusions

I New representation for the block ciphers with partial
non-linear layer.

I A new insight into the security evaluation of block ciphers
with a partial non-linear layer by presenting a new
cryptanalytic technique.

I Best results for some versions of LowMC. Led to a new round
’formula’ v3.

14 / 14


	Introduction
	LowMC Description
	Related Work

	New Technique
	Overview of the Technique
	Proposed Framework

	Key Recovery
	Simplified Representation of LowMC
	Impact on Applications of LowMC

	Conclusion

