CRYPTANALYSIS OF AES-PRF AND ITS DUAL

Patrick Derbez1 Tetsu Iwata2 Ling Sun3,4 Siwei Sun5
Yosuke Todo6 Haoyang Wang4 Meiqin Wang3

1. Univ Rennes, CNRS, IRISA, France
2. Nagoya University, Japan
3. Shandong University, China
4. Nanyang Technological University, Singapore
5. Chinese Academy of Sciences, China
6. NTT Secure Platform Laboratories, Japan

FSE 2019, Paris, France @ March 25, 2019
Overview

1. Background and Motivation

2. Preliminary

3. Overview of Our Attacks

4. Attacks on AES-PRF

5. Attacks on Dual-AES-PRF

6. Summary and Conclusion
BACKGROUND AND MOTIVATION
Background

Pseudorandom permutation (PRP)

- Main primitives in symmetric-key cryptography
- Ultimate security goal in the design of block ciphers
- Many secure block ciphers are readily available, e.g., AES
BACKGROUND

Pseudorandom permutation (PRP)

▶ Main primitives in symmetric-key cryptography
▶ Ultimate security goal in the design of block ciphers
▶ Many secure block ciphers are readily available, e.g., AES

Pseudorandom function (PRF)

▶ Invertibility is unnecessary
▶ CTR encryption mode, authenticated encryption GCM
BACKGROUND

Pseudorandom permutation (PRP)

- Main primitives in symmetric-key cryptography
- Ultimate security goal in the design of block ciphers
- Many secure block ciphers are readily available, e.g., AES

Pseudorandom function (PRF)

- Invertibility is unnecessary
- CTR encryption mode, authenticated encryption GCM

PRP-to-PRF conversion

- Large efficiency costs design, e.g., Truncation, XOR of Permutations (XoP), Encrypted Davies-Meyer (EDM), The Dual of EDM (EDMD)
- Dedicated design with small efficiency costs, e.g., FastPRF,

\[\text{FastPRF}_K(X) = E_K(X) \oplus E_K^1(X). \]
Motivation

Observations

- $\text{AES-PRF}_{s,t}$ is as efficient as AES
- Efficiency and cost-effectiveness comes at the cost of provable security
- Provable security result of EDMD no longer applies to AES-PRF

Open Problems

- $(s, t) = (2, 8)$ is left as an open question
- The security of $\text{AES-PRF}_{s,t}$
- The security of the dual version (Dual-AES-PRF)

Methods

- ID, ZC, DC, and MITM
Preliminary

Preliminary
AES-PRF & Dual-AES-PRF

- **AES-PRF_{s,t}** (Mennink and Neves @ FSE 2018)

- **Dual-AES-PRF_{s,t}**
Overview of Our Attacks
Attacks on AES-PRF

Impossible differential/Zero-correlation attacks (s ≤ 2)

![Diagram of impossible differential/zero-correlation attacks]

Zero-correlation distinguishers (t ≤ 4)

![Diagram of zero-correlation distinguishers]

Meet-in-the-middle attacks on AES-PRF_{s,7−s}
Attacks on Dual-AES-PRF

Impossible differential/Zero-correlation attacks ($t \leq 2$)

Differential attacks ($s \leq 4$)
ATTACKS ON AES-PRF
Impossible Differential Attack for AES-PRF

\[s \text{ rounds} \rightarrow \Delta_{\text{in}}/\Gamma_{\text{in}} \rightarrow \Delta_{\text{out}}/\Gamma_{\text{out}} \rightarrow \Delta_{\text{out}}/\Gamma_{\text{out}} \rightarrow 0 \rightarrow \Delta_{\text{out}}/\Gamma_{\text{out}} \rightarrow \text{contradiction} \rightarrow \text{key recovery} \]

Diagram:
- \(K_0 \) and \(K_1 \)
- \(P \), \(x_1 \), \(x_1^i \), \(x_1^r \)
- \(SB \), \(SR \)
- \(MC \), \(MC^{-1} \)
- \(F \)
- \(x_2 \), \(x_2^i \), \(x_2^r \)
- \(MC^{-1}(K_2) \)
- \(C \)
Zero-Correlation Linear Attack for AES-PRF$_{2,8}$

Motivation Preliminary Overview Attacks on AES-PRF Attacks on Dual-AES-PRF Conclusion
Distinguishers against AES-PRF$_{7,3}$ & AES-PRF$_{6,4}$

ZC Distinguisher for AES$_3$

ZC Distinguisher for AES$_4$
Attack against AES-PRF\textsubscript{3,4}

The number of possible sequences: $\left(2^8\right)^{255} = 2^{2040} \rightarrow \left(2^8\right)^{25} = 2^{200}$
Attacks on Dual-AES-PRF
Impossible Differential Attack for Dual-AES-PRF
t rounds

contradiction

key recovery
Zero-correlation attack for Dual-AES-PRF

\[
\Delta_{\text{in}} \quad \Gamma_{\text{in}} \quad \Delta_{\text{in}} \quad \Gamma_{\text{in}} \quad 0 \quad \Delta_{\text{in}} \quad \Gamma_{\text{in}} \quad t \text{ rounds} \quad \Delta_{\text{out}} \quad \Gamma_{\text{out}}
\]

Contradiction → Key recovery

\[
P \xrightarrow{S R^{-1}} 8 \text{ rounds} \xrightarrow{S R} K_{10}
\]

\[
SB^{-1}(x_9^R) \xrightarrow{SB} x_9^R \xrightarrow{MC} x_9^E \xrightarrow{MC^{-1}} MC^{-1}(K_9) \xrightarrow{SB} x_9 S \xrightarrow{SR} x_{10}^R \xrightarrow{SR^{-1}} C
\]
Differential Attack for Dual-AES-PRF4,6

\[\Delta_{in} \rightarrow s \text{ rounds} \rightarrow \Delta_{in} \rightarrow \oplus \rightarrow 0 \rightarrow \ast \rightarrow 0 \]

key recovery

\[K_0 \rightarrow P \rightarrow x_1^P \rightarrow S_{B_1} \rightarrow S_{R_1} \rightarrow E_{K_1} \rightarrow x_1^E \rightarrow K_1 \]

\[\Delta_{in} \rightarrow 6 \text{ rounds} \rightarrow C \}

\[EK_2 \rightarrow x_2^E \rightarrow S_{B_2} \rightarrow S_{R_2} \rightarrow x_2^S \rightarrow P \]

\[EK_3 \rightarrow x_3^E \rightarrow S_{B_3} \rightarrow S_{R_3} \rightarrow x_3^S \rightarrow P \]

\[EK_4 \rightarrow x_4^E \rightarrow S_{B_4} \rightarrow S_{R_4} \rightarrow x_4^S \rightarrow P \]
Summary and Conclusion
Summary

<table>
<thead>
<tr>
<th>Target</th>
<th>s</th>
<th>t</th>
<th>Time</th>
<th>Data</th>
<th>Memory</th>
<th>Method</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES-PRF</td>
<td>1</td>
<td>*</td>
<td>2^{101}</td>
<td>2^{67} CP</td>
<td>2^{67}</td>
<td>ID</td>
<td>@FSE 2017</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>*</td>
<td>2^{71}</td>
<td>2^{71} CP</td>
<td>2^{64}</td>
<td>ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>*</td>
<td>$2^{122.49}$</td>
<td>$2^{103.34}$ KP</td>
<td>2^{96}</td>
<td>ZC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>*</td>
<td>2^{94}</td>
<td>2^{94} CP</td>
<td>2^{88}</td>
<td>ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>*</td>
<td>$2^{115.14}$</td>
<td>$2^{115.06}$ KP</td>
<td>2^{65}</td>
<td>ZC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>3</td>
<td>$2^{84.96}$</td>
<td>$2^{84.96}$ KP</td>
<td>$2^{84.96}$</td>
<td>ZC distinguisher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>4</td>
<td>$2^{96.95}$</td>
<td>$2^{96.95}$ KP</td>
<td>2^{64}</td>
<td>ZC distinguisher</td>
<td></td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>$7 - s$</td>
<td>2^{107}</td>
<td>2^{107} CP</td>
<td>2^{104}</td>
<td>MitM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual-AES-PRF</td>
<td>*</td>
<td>1</td>
<td>2^{71}</td>
<td>2^{71} CP</td>
<td>2^{64}</td>
<td>ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>1</td>
<td>$2^{122.49}$</td>
<td>$2^{103.34}$ KP</td>
<td>2^{96}</td>
<td>ZC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>2</td>
<td>2^{104}</td>
<td>2^{104} CP</td>
<td>2^{72}</td>
<td>ID</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>2</td>
<td>$2^{115.14}$</td>
<td>$2^{115.06}$ KP</td>
<td>2^{65}</td>
<td>ZC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>*</td>
<td>2^{97}</td>
<td>2^{97} CP</td>
<td>2^{32}</td>
<td>Differential</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>*</td>
<td>2^{121}</td>
<td>2^{121} CP</td>
<td>2^{8}</td>
<td>Differential</td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSION

▶ Comparison between AES-PRF and Dual-AES-PRF
 ▶ The security of AES-PRF is **higher** than Dual-AES-PRF from the applicability of differential attacks.
 ▶ Both AES-PRF and Dual-AES-PRF **have only one** round as the security margin.

▶ Choice of the parameter
 ▶ The balanced case AES-PRF\(_{5,5}\) is certainly a natural choice of the design.
 ▶ However, our results indicate that \((s, t) = (4, 6)\) for AES-PRF is potential to be more secure, since the margin with respect to the attacked rounds becomes larger.
Thank you for your attention!

Thank the anonymous FSE 2019 reviewers and Samuel Neves for careful reading and many helpful comments.

Thank all the group members at ASK 2017 for the fruitful discussion.