Key Prediction Security of Keyed Sponges

Bart Mennink Radboud University (The Netherlands)

> Fast Software Encryption 2019 March 26, 2019

Sponges [BDPV07]

- Cryptographic hash function
- SHA-3, XOFs, lightweight hashing, ...
- Behaves as RO up to query complexity $\approx 2^{c/2}$ [BDPV08]

Keyed Sponges

• Outer-Keyed Sponge [BDPV11,ADMV15,NY16]

Keyed Sponges

- Outer-Keyed Sponge [BDPV11,ADMV15,NY16]
- Inner-Keyed Sponge [CDHKN12,ADMV15,NY16]

Keyed Sponges

- Outer-Keyed Sponge [BDPV11,ADMV15,NY16]
- Inner-Keyed Sponge [CDHKN12,ADMV15,NY16]
- Full-Keyed Sponge [BDPV12,GPT15,MRV15]

Security of Keyed Sponge

• $F \in \{OKS, FKS\}$

Security of Keyed Sponge

- $F \in \{OKS, FKS\}$
- M: data (construction) complexity
- N: time (primitive) complexity

Simplified Security Bound

$$\frac{M^2}{2^c} + \frac{MN}{2^c} + \mathbf{Adv}_F^{\text{key-pre}}(N)$$

Security of Keyed Sponge

- $F \in \{OKS, FKS\}$
- M: data (construction) complexity
- ullet N: time (primitive) complexity

Simplified Security Bound

Key Prediction Security

$\operatorname{Adv}_F^{ ext{key-pre}}(N)$

- ullet Adversary makes N queries to π
- ullet Key K randomly drawn
- Adversary wins if query history "covers K"

Key Prediction Security: Existing Bounds

One Key Block

- ullet Adversary makes N queries
- ullet Query history covers at most N keys

$$\mathbf{Adv}_F^{ ext{key-pre}}(N) \leq rac{N}{2^k}$$

Key Prediction Security: Existing Bounds

One Key Block

- ullet Adversary makes N queries
- ullet Query history covers at most N keys

More Than One Key Block

- By Gaži et al. [GPT15]
- Used in many sponge proofs

$$\mathbf{Adv}_F^{\text{key-pre}}(N) \leq \frac{N}{2k}$$

$$\mathbf{Adv}_F^{ ext{key-pre}}(N) \lesssim rac{b^\lambda N}{2^{k/2}}$$

Key Prediction Security: Implication for OKS

Case of
$$(b, c, r, k) = (320, 256, 64, 64)$$

$$\frac{M^2}{2^c} + \frac{MN}{2^c} + \frac{N}{2^k} = \frac{M^2}{2^{256}} + \frac{MN}{2^{256}} + \frac{N}{2^{64}}$$

Case of
$$(b, c, r, k) = (320, 256, 64, 128)$$

$$\frac{M^2}{2^c} + \frac{MN}{2^c} + \frac{N}{2^{k/2}} = \frac{M^2}{2^{256}} + \frac{MN}{2^{256}} + \frac{N}{2^{64}}$$

New Analysis

$$\mathbf{Adv}_F^{\text{key-pre}}(N) \lesssim rac{c^{\lambda-1}N}{2^k}$$

- Loss c due to lucky multi-collisions (in old bound: b)
- 2^k in denominator (in old bound: $2^{k/2}$)
- Best attack: around 2^k queries

ullet Fix any query from V_2 to $V_3\colon N$ options

- ullet Fix any query from V_2 to $V_3\colon N$ options
- This query fixes inner part of second-last layer

- ullet Fix any query from V_2 to $V_3\colon N$ options
- This query fixes inner part of second-last layer

- Consider configurations for these layers
 - Arrows indicate query direction, circles indicate inner collisions

- ullet Fix any query from V_2 to V_3 : N options
- This query fixes inner part of second-last layer

- Consider configurations for these layers
 - Arrows indicate query direction, circles indicate inner collisions
- ullet Inductive reasoning on non-occurrence of $lpha^i$ -fold collisions

Further Application to Duplex

• Unkeyed Duplex [BDPV11]

Further Application to Duplex

- Unkeyed Duplex [BDPV11]
- Outer-Keyed Duplex [BDPV11]

Further Application to Duplex

- Unkeyed Duplex [BDPV11]
- Outer-Keyed Duplex [BDPV11]
- Full-Keyed Duplex [MRV15,DMV17]

Application to Duplex

Bounds Reduce Bi-Directionally [MRV15,DMV17]

OKS and OKD:
$$\frac{M^2}{2^c} + \frac{MN}{2^c} + \mathbf{Adv}_{OKS}^{\text{key-pre}}(N)$$

FKS and FKD:
$$\frac{M^2}{2^c} + \frac{MN}{2^c} + \mathbf{Adv}_{\mathrm{FKS}}^{\mathrm{key-pre}}(N)$$

Same for Nonce-Respecting Setting [JLM14,DMV17]

OKS and OKD:
$$\frac{M^2}{2^b} + \frac{N}{2^c} + \mathbf{Adv}_{OKS}^{\text{key-pre}}(N)$$

FKS and FKD:
$$\frac{M^2}{2^b} + \frac{N}{2^c} + \mathbf{Adv}_{\mathrm{FKS}}^{\mathrm{key-pre}}(N)$$

Application to CAESAR

CAESAR Competition

• Four third-round candidates based on duplex

b	c	r	k
320	256	64	128
320	192	128	128
200	184	16	92
400	368	32	128
800	256	544	128224
1600	256	1344	128224
512	128	384	128
1024	256	768	256
	320 320 200 400 800 1600	320 256 320 192 200 184 400 368 800 256 1600 256	320 256 64 320 192 128 200 184 16 400 368 32 800 256 544 1600 256 1344 512 128 384

Application to CAESAR

CAESAR Competition

• Four third-round candidates based on duplex

scheme	b	c	r	k
Ascon [DEMS16]	320	256	64	128
	320	192	128	128
Ketje [BDP+16]	200	184	16	92
	400	368	32	128
Keyak [BDP+16]	800	256	544	128224
	1600	256	1344	128224
NORX [AJN16]	512	128	384	128
	1024	256	768	256

• Initialize entire state using key (FKS for key)

Application to CAESAR Portfolio: Ascon

Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2

1.4 Mode of Operation

The mode of operation of ASCON is based on duplex sponge modes like Monkey Duplex [13], but uses a stronger keyed initialization and keyed finalization function. The core permutations p^a and p^b operate on a sponge state S of size 320 bits, with a rate of r bits and a capacity of c=320-r bits. For a more convenient notation, the rate and capacity parts of the state S are denoted by S_r and S_c , respectively. The encryption and decryption operations are illustrated in Figure 1a and Figure 1b and specified in Algorithm 1.

Old Bound (Simplified)

$$\frac{M^2}{2^{320}} + \frac{N}{2^{256}} + \frac{N}{2^{64}}$$

ullet If $M \leq 2^{160}$, security as long as $N \leq 2^{64}$

New Bound (Simplified)

$$\frac{M^2}{2^{320}} + \frac{N}{2^{256}} + \frac{N}{2^{128}}$$

• If $M \le 2^{160}$, security as long as $N \le 2^{128}$

Application to STROBE

STROBE Protocol Framework [Ham17]

- Lightweight framework for network protocols
- Goal: simple framework with small code size

Application to STROBE

STROBE Protocol Framework [Ham17]

- Lightweight framework for network protocols
- Goal: simple framework with small code size
- Hashing, authentication, and encryption:
 all using sponge and outer-keyed sponge/duplex

Application to STROBE

STROBE Protocol Framework [Ham17]

- Lightweight framework for network protocols
- Goal: simple framework with small code size
- Hashing, authentication, and encryption:
 all using sponge and outer-keyed sponge/duplex

scheme	b	c	r	k
STROBE-128/1600	1600	256	1344	256
STROBE-256/1600	1600	512	1088	256
STROBE-128/800	800	256	544	256
STROBE-256/800	800	512	288	256
STROBE-128/400	400	256	144	256

Old Bound (Simplified)

$$\frac{M^2}{2^{256}} + \frac{MN}{2^{256}} + \frac{N}{2^{128}}$$

• If $M \leq 2^{100} =: 2^a$, security as long as $N \leq 2^{128}$

New Bound (Simplified)

$$\frac{M^2}{2^{256}} + \frac{MN}{2^{256}} + \frac{N}{2^{256}}$$

• If $M \leq 2^{100} =: 2^a$, security as long as $N \leq 2^{156}$

Conclusion

Tight Key Prediction Security

- Last "missing link" in keyed sponge proofs
- Close to optimal bound

Applications

- ullet Every use of outer-keyed sponge/duplex with k>r
- HMAC-SHA-3 [NY16] and sandwich sponge [Nai16]
- STROBE protocol framework
- Lightweight permutations

Thank you for your attention!