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Sponges [BDPV07]
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e Cryptographic hash function

e SHA-3, XOFs, lightweight hashing, ...
e Behaves as RO up to query complexity ~ 2¢/2 [BDPV08]
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Keyed Sponges
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e Outer-Keyed Sponge [BDPV11,ADMV15,NY16]
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Keyed Sponges
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e Outer-Keyed Sponge [BDPV11,ADMV15,NY16]
e Inner-Keyed Sponge [CDHKN12,ADMV15,NY16]
e Full-Keyed Sponge [BDPV12,GPT15MRV15]
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Security of Keyed Sponge
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Security of Keyed Sponge
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e M: data (construction) complexity

e N: time (primitive) complexity

Simplified Security Bound

M? MN
+

5 T g TAVETE(N)

4/18



Security of Keyed Sponge
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Key Prediction Security
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AdvEYPre ()
o Adversary makes N queries to m
e Key K randomly drawn

e Adversary wins if query history “covers K"
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Key Prediction Security: Existing Bounds

K my mo my, 21 29
0 i i i y y
/l s s s m
00—+ 7
c c c c c c
N N N

One Key Block
o Adversary makes N queries AdvEYP(N) <
e Query history covers at most N keys
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Key Prediction Security: Existing Bounds
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One Key Block
o Adversary makes N queries

e Query history covers at most NV keys

More Than One Key Block
e By Gazi et al. [GPT15]

e Used in many sponge proofs
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~ 9k/2
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Key Prediction Security: Implication for OKS
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Case of (b,c, 7, k) = (320,256, 64, 64)
M? MN ﬁ - M? MN N

9c 9c ok 9256 ' 9256 ' 964

Case of (b, c,r, k) = (320, 256, 64, 128)
M2 MN N M2 MN N

9c 9c ok/2 9256 ' 9256 ' 964
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New Analysis
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e Loss ¢ due to lucky multi-collisions (in old bound: b)
e 2% in denominator (in old bound: 2%/2)

e Best attack: around 2% queries
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Proof Idea

e Tree-based approach (as in [GPT15])
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Proof Idea

e Tree-based approach (as in [GPT15])

4 Wi Vs V3

goal: bound # paths from Vj to V3
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Proof Idea

e Fix any query from V5 to V3: N options
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Proof Idea

e Fix any query from V5 to V3: N options

e This query fixes inner part of second-last layer
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Proof Idea

e Fix any query from V5 to V3: N options

e This query fixes inner part of second-last layer

Vo Vi V2 Vo Vi Va
config. 00: ¢ ——®——
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lv2] e config. 11: ®+——@«+——
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e Consider configurations for these layers
e Arrows indicate query direction, circles indicate inner collisions
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Proof Idea

e Fix any query from V5 to V3: N options

e This query fixes inner part of second-last layer

Vo Vi V2 Vo Vi Va
config. 00: ¢ ——®——
0+ config. 01: ¢ — @ +——
config. 10: ®+—— ¢ ——

lv2]e config. 11: ®+—@®+——
=w

e Consider configurations for these layers
e Arrows indicate query direction, circles indicate inner collisions

e Inductive reasoning on non-occurrence of a’-fold collisions
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Further Application to Duplex
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e Unkeyed Duplex [BDPV11]
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Further Application to Duplex
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e Unkeyed Duplex [BDPV11]
e Outer-Keyed Duplex [BDPV11]
e Full-Keyed Duplex [MRV15DMV17]
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Application to Duplex

Bounds Reduce Bi-Directionally [MRV15,DMV17]

M? MN

OKS and OKD: 5 T ot Advl(()ely('spre(N)
M? MN

FKS and FKD: et gt Advlg‘%’-spre( N)

Same for Nonce-Respecting Setting [JLM14,DMV17]

M? N

OKS and OKD: > 4 % + Advléf%épre(]v)
M? N

FKS and FKD: - + % + Advlge%-spre(N)

12/18



Application to CAESAR

CAESAR Competition

e Four third-round candidates based on duplex

scheme b c r k
Ascon [DEMS16] 320 256 64 128
320 192 128 128
Ketje [BDP+16] 200 184 16 92
400 368 32 128
Keyak [BDP+16] 800 256 544 128..224
1600 256 1344 128..224
NORX [AJN16] 512 128 384 128
1024 256 768 256
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Application to CAESAR

CAESAR Competition

e Four third-round candidates based on duplex

scheme b c r k
Ascon [DEMS16] 320 256 64 128
320 192 128 128
Ketje [BDP+16] 200 184 16 92
400 368 32 128

Keyak [BDP+16] 800 256 544 128..224
1600 256 1344 128..224

NORX [AJN16] 512 128 384 128
1024 256 768 256

e Initialize entire state using key (FKS for key)

13/18



Application to CAESAR Portfolio: Ascon

Dobraunig, C., Eichlseder, M., Mendel, F., Schlaffer, M.: Ascon v1.2

1.4 Mode of Operation

The mode of operation of ASCON is based on duplex sponge modes like MonkeyDuplex [13],
but uses a stronger keyed initialization and keyed finalization function. The core permu-
tations p® and p’ operate on a sponge state S of size 320 bits, with a rate of r bits and
a capacity of ¢ = 320 — r bits. For a more convenient notation, the rate and capacity
parts of the state S are denoted by S, and S., respectively. The encryption and decryption
operations are illustrated in Figure 1a and Figure 1b and specified in Algorithm 1.

(a) Encryption
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Application to CAESAR Portfolio: Ascon-128 Parameters*

Old Bound (Simplified)

M? N N
9320 T 9256 + 964

o If M < 2160 security as long as N < 264

New Bound (Simplified)

M? N N
320 T 9256 T 9128

o If M < 2190 security as long as N < 2128

* Reasoning does not apply to Ascon-128 itself

(b7 c7 r7 k) -
(320, 256, 64, 128)
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Application to STROBE

STROBE Protocol Framework [Ham17]
e Lightweight framework for network protocols

e Goal: simple framework with small code size
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Application to STROBE

STROBE Protocol Framework [Ham17]

e Lightweight framework for network protocols

e Goal: simple framework with small code size

e Hashing, authentication, and encryption:
all using sponge and outer-keyed sponge/duplex

scheme b c r k
STROBE-128/1600 1600 256 1344 256
STROBE-256/1600 1600 512 1088 256
STROBE-128/800 800 256 544 256
STROBE-256/800 800 512 288 256
STROBE-128/400 400 256 144 256
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Application to STROBE-128/400

Old Bound (Simplified)

M? MN N
9256 T 9256 1 5128

o If M <2190 =: 29 security as long as N < 2128

New Bound (Simplified)

M? MN N
9256 T 9256 T 5250

o If M <2190 =: 2% security as long as N < 2156

(bye,r k) =
(400, 256, 144, 256)
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Conclusion

Tight Key Prediction Security
e Last “missing link” in keyed sponge proofs
e Close to optimal bound

Applications
e Every use of outer-keyed sponge/duplex with & > r
e HMAC-SHA-3 [NY16] and sandwich sponge [Nail6]
e STROBE protocol framework
e Lightweight permutations

Thank you for your attention!
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