ShiftRows Alternatives for AES-like Ciphers and Optimal Cell Permutations for Midori and Skinny

Gianira N. Alfarano1, Christof Beierle2, Takanori Isobe3, Stefan Köbl4, Gregor Leander2

March 25th, 2019

1University of Zurich, Switzerland
2Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
3University of Hyogo, Japan
4Cybercrypt, Denmark
AES-like Constructions are very popular

- **Block Ciphers:**
 - Deoxys-BC, Kuzneychik, LED, Midori, Prince, Skinny, ...

- **Hash Functions:**
 - Grøstl, Photon, Streebog, Whirlpool, ...

- **Permutations:**
 - AESQ, Haraka, Prøst, Simpira, ...
Building blocks:

- **SB**: S S S S S
- **P_p**: Arrows indicating the mixing process
- **Mix_M**: Swirls indicating the mixing process
AES-like Primitives

Building blocks:

- Apply S-box on each cell
- Only non-linear component
- Vast area of research
AES-like Primitives

Building blocks:

- Multiply each column with matrix
- Vast area of research

Mix_M
AES-like Primitives

Building blocks:

- Apply S-box on each cell
- Only non-linear component
- Vast area of research
- Multiply each column with matrix
- Vast area of research
Security of AES-like Primitives

Resistance against differential and linear cryptanalysis.

- S-box: Every *active* S-box has an effect on probability of differential trail.
- Mix: Gives a lower bound on active S-boxes in one round.
- Permute: Heavily influences bounds for multiple rounds.

Goal

Find a lower bound on the number of active S-boxes for a design.
Example AES

- MixColumns has *branch number* 5.
- Only constraint active input + output ≥ 5.
Security of AES-like Primitives

Example AES

- MixColumns has *branch number* 5.
- Only constraint active input + output ≥ 5.

![Diagram of AES operations]

SB SR MC SB SR MC
Example AES

- MixColumns has *branch number* 5.
- Only constraint active input + output ≥ 5.
Example AES

- MixColumns has *branch number* 5.
- Only constraint active input + output ≥ 5.
Example AES

- MixColumns has *branch number* 5.
- Only constraint active input + output ≥ 5.
Example AES

- MixColumns has branch number 5.
- Only constraint active input + output ≥ 5.
Security of AES-like Primitives

Can be much more complex for other choices:

- Midori (Branch number 4)
- but not possible to have $2 \rightarrow 3$ (or $3 \rightarrow 2$) transitions.
- Skinny (Branch number 2)
Known results on the permute layer

- \(M \) is MDS and \(n \times n \) state \(\rightarrow \) AES ShiftRows optimal
- *Linear Frameworks for Block Ciphers*, Daemen, Knudsen, Rijmen, DCC, 2001
AES-like Primitives

Known results on the permute layer

- M is MDS and $n \times n$ state \rightarrow AES ShiftRows optimal
- *Linear Frameworks for Block Ciphers*, Daemen, Knudsen, Rijmen, DCC, 2001

Problem we solve

Given an $n \times m$ state of w-bit words with a fixed SB and Mix layer. What is the optimal choice for permute w.r.t. security against differential/linear cryptanalysis?
How can we find the optimal choice for p?

- For a 4×4 state we already get $2^{44.25}$ choices.
- Need to evaluate cryptanalytical properties for all of them?
- How can we limit the search space?
First observation:

- Consider permutation p and ϑ.
- If $\text{Mix}_M \circ \text{Permute}_{\vartheta} = \text{Permute}_{\vartheta} \circ \text{Mix}_M$...
- ...then Permute_p and $\text{Permute}_{\vartheta \circ \vartheta^{-1}}$ have the same cryptographic properties.
First observation:

- Consider permutation \(p \) and \(\psi \).
- If \(\text{Mix}_M \circ \text{Permute}_{\psi} = \text{Permute}_{\psi} \circ \text{Mix}_M \ldots \)
- ...then \(\text{Permute}_p \) and \(\text{Permute}_{\psi \circ \psi^{-1}} \) have the same cryptographic properties.
First observation:

- Consider permutation \(p \) and \(\vartheta \).
- If \(\text{Mix}_M \circ \text{Permute}_\vartheta = \text{Permute}_\vartheta \circ \text{Mix}_M \)...
- ...then \(\text{Permute}_p \) and \(\text{Permute}_{\vartheta \circ \vartheta^{-1}} \) have the same cryptographic properties.
Equivalence Relation:

- Two permutations p, p' are \mathbf{M}-equivalent if there exists ϑ such that
 \[p' = \vartheta \circ p \circ \vartheta^{-1}, \] \hspace{1cm} (1)
 and ϑ commutes with \mathbf{M}.

- \mathbf{M}-equivalent permutations will have same number of active S-boxes!

- Unclear how to efficiently determine \mathbf{M}-equivalence.
weak \textbf{M}-equivalence:

- $\theta = \pi \circ \phi$
- π permutes whole columns of the state
- ϕ permutes inside columns individually
Classifying Cell Permutations

Structure matrix

Example

\[
\begin{bmatrix}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15
\end{bmatrix}
\xrightleftharpoons{P}
\begin{bmatrix}
4 & 0 & 13 & 1 \\
5 & 6 & 14 & 2 \\
11 & 9 & 8 & 3 \\
15 & 12 & 7 & 10
\end{bmatrix}
, \quad A_P = \begin{pmatrix}
0 & 1 & 0 & 3 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0
\end{pmatrix}
\]
Classifying Cell Permutations

Structure matrix

Example

\[
\begin{bmatrix}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
\end{bmatrix}
\xrightarrow{P}
\begin{bmatrix}
4 & 0 & 13 & 1 \\
5 & 6 & 14 & 2 \\
11 & 9 & 8 & 3 \\
15 & 12 & 7 & 10 \\
\end{bmatrix}
\]

,

\[
A_P = \begin{pmatrix}
0 & 1 & 0 & 3 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0 \\
\end{pmatrix}
\]
Classifying Cell Permutations

Structure matrix

Example

\[
\begin{bmatrix}
0 & 4 & 8 & 12 \\
1 & 5 & 9 & 13 \\
2 & 6 & 10 & 14 \\
3 & 7 & 11 & 15 \\
\end{bmatrix}
\xrightarrow{P}
\begin{bmatrix}
4 & 0 & 13 & 1 \\
5 & 6 & 14 & 2 \\
11 & 9 & 8 & 3 \\
15 & 12 & 7 & 10 \\
\end{bmatrix}
\Rightarrow
\begin{pmatrix}
0 & 1 & 0 & 3 \\
2 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
1 & 1 & 2 & 0 \\
\end{pmatrix}
\]
Classifying Cell Permutations

Structure matrix

<table>
<thead>
<tr>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

\[\begin{pmatrix} 0 & 4 & 8 & 12 \\ 1 & 5 & 9 & 13 \\ 2 & 6 & 10 & 14 \\ 3 & 7 & 11 & 15 \end{pmatrix} \xrightarrow{P} \begin{pmatrix} 4 & 0 & 13 & 1 \\ 5 & 6 & 14 & 2 \\ 11 & 9 & 8 & 3 \\ 15 & 12 & 7 & 10 \end{pmatrix} \]

\[A_P = \begin{pmatrix} 0 & 1 & 0 & 3 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix} \]
Classifying Cell Permutations

Structure matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>4</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>7</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>0</th>
<th>13</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>5</td>
<td>6</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>9</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>12</td>
<td>7</td>
<td>10</td>
</tr>
</tbody>
</table>

, $A_p = \begin{pmatrix} 0 & 1 & 0 & 3 \\ 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 0 \end{pmatrix}$
Result

We provide an efficient algorithm to enumerate all permutations up to weak M-equivalence.

Basic idea of the algorithm:

- Enumerates all permutations up to **weak M** equivalence for given structure matrix.
- For example 4×4 state there are 10147 valid structure matrices.
- Find *smallest* representatives of each equivalence class.
When does weak M imply M equivalence?

- Consider the matrix M.
- Let G be the directed graph corresponding to the adjacency matrix of M.
- If G is strongly connected then M coincides with weak M.
Midori block cipher

- Energy efficient cipher
- 4×4 state
- Uses generic p
- MixColumns (Branch number 4, not all transitions possible)

$$
M = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{pmatrix}.
$$
Takes a few days on a standard PC to find all permutations up to \mathbf{M}-equivalence.

- $2^{21.7}$ distinct equivalence classes.
- MILP (slow for larger number of rounds)
- Using branch and bound (Matsui’s algorithm) much faster

https://github.com/kste/matsui
Case Study: Midori

Midori64

Midori128
Conclusion

- Original permutation optimal for 1 to 12 rounds
- ...except for 9 rounds: 44 active S-boxes (instead of 41).
- For any higher number of rounds it is never optimal.
Proof in the paper

► If p, p^2 and p^3 have the structure matrix

$$
\mathbf{A}_p = \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{pmatrix}
$$

then there are at least 28 active S-boxes for 6 rounds.
Case Study: Skinny

Skinny

- Lightweight Tweakable Block Cipher
- Uses AES ShiftRows
- MixColumns (Branch number 2)
Case Study: Skinny

Results using our algorithm

- weak M also implies M for Skinny MixColumns
- In total $2^{39.66}$ equivalence classes.
- Took 23.8 CPU days to find them.
We filter further:

- Only use permutations which give good diffusion
- Still 2,726,526 left...
- \(\approx 2937 \) CPU days to run Matsui’s for all variants
Summary

- Better theoretical understanding
- Useful tool for future designs
- Possible to evaluate the *best* choice for some designs