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SHA-3 (Keccak) Hash Function
The sponge construction [BDPV11]

b-bit permutation f
Two parameters: bitrate r , capacity c, and b = r + c.
The message is padded and then split into r -bit blocks.
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SHA-3 Hash Function
Keccak-f permutation

1600 bits: seen as a 5× 5 array
of 64-bit lanes,
A[x , y ], 0 ≤ x , y < 5

24 rounds

each round R consists of five
steps:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

χ : the only nonlinear operation

Slice
Column

Lane

Row

http://www.iacr.org/authors/tikz/

J. Guo Security of SHA-3 and Related Constructions FSE 2019 @ Paris 5 / 49

http://www.iacr.org/authors/tikz/


SHA-3 Hash Function
Keccak permutation: ι ◦ χ ◦ π ◦ ρ ◦ θ

θ step: adding two columns to the current bit

C [x ] =A[x , 0]⊕ A[x , 1]⊕ A[x , 2]⊕
A[x , 3]⊕ A[x , 4]

D[x ] =C [x − 1]⊕ (C [x + 1] ≪ 1)

A[x , y ] =A[x , y ]⊕ D[x ]

http://keccak.noekeon.org/

The Column Parity kernel
I If C [x ] = 0, 0 ≤ x < 5, then the state A is in the CP kernel.
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SHA-3 Hash Function
Keccak permutation: ι ◦ χ ◦ π ◦ ρ ◦ θ

ρ step: lane level rotations, A[x , y ] = A[x , y ] ≪ r [x , y ]

http://keccak.noekeon.org/

Rotation offsets r [x , y ]
x = 0 x = 1 x = 2 x = 3 x = 4

y = 0 0 1 62 28 27
y = 1 36 44 6 55 20
y = 2 3 10 43 25 39
y = 3 41 45 15 21 8
y = 4 18 2 61 56 14
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SHA-3 Hash Function
Keccak permutation: ι ◦ χ ◦ π ◦ ρ ◦ θ

π step: permutation on lanes
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SHA-3 Hash Function
Keccak permutation: ι ◦ χ ◦ π ◦ ρ ◦ θ

χ step: 5-bit S-boxes, nonlinear operation on rows

y0 = x0 ⊕ (x1 ⊕ 1) · x2
y1 = x1 ⊕ (x2 ⊕ 1) · x3
y2 = x2 ⊕ (x3 ⊕ 1) · x4
y3 = x3 ⊕ (x4 ⊕ 1) · x0
y4 = x4 ⊕ (x0 ⊕ 1) · x1

The algebraic degrees of
χ and χ−1 are 2 and 3.

x0 x1 x2 x3 x4

y0 y1 y2 y3 y4
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SHA-3 Hash Function
Keccak permutation: ι ◦ χ ◦ π ◦ ρ ◦ θ

ι step: adding a round constant to the state

Adding one round-dependent constant to the first ”lane”, to destroy
the symmetry.

Without ι
The round function would be symmetric.
All rounds would be the same.
Fixed points exist.
Vulnerable to rotational attacks, slide attacks, ...
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SHA-3 Hash Function
Round function of Keccak-f

Internal state A: a 5× 5 array of 64-bit lanes
θ step C [x ] = A[x , 0]⊕ A[x , 1]⊕ A[x , 2]⊕ A[x , 3]⊕ A[x , 4]

D[x ] = C [x − 1]⊕ (C [x + 1] ≪ 1)
A[x , y ] = A[x , y ]⊕ D[x ]

ρ step A[x , y ] = A[x , y ] ≪ r [x , y ]
- The constants r [x , y ] are the rotation offsets.

π step A[y , 2 ∗ x + 3 ∗ y ] = A[x , y ]
χ step A[x , y ] = A[x , y ]⊕ (( A[x + 1, y ])&A[x + 2, y ])
ι step A[0, 0] = A[0, 0]⊕ RC

- RC [i ] are the round constants.
L , π ◦ ρ ◦ θ
The only non-linear operation is χ step.
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Preimage Attacks — Linear Structures

Core ideas: treat the bits of message block as variables, and convert
the preimage finding problem into a system of linear equation; the
algebraic degree of the variables is kept to be at most 1 for as many
rounds as possible.

limit the algebraic degrees increased by χ.
limit the diffusion effect of θ by forcing the variables in CP kernel.
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How to keep χ linear
The expression of b = χ(a) is of algebraic degree 2:
bi = ai + ai+1 · ai+2, for i = 0, 1, . . . , 4.

Observation
When there is no neighbouring variables in the input of an Sbox, the
application of χ does NOT increase algebraic degrees.

x0 c x2 0 1

x0 +
c · x2

c x2 0
1 +

x0 · c√

c x1 x2

c +
x1 · x2

×
Allows at most 2 independent variables, i.e., at least 3 out of 5 bits
need to be fixed in each Sbox.
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Linear Structure — A Simple Example
=∑
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=∑
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0,4 0,4

0,3 0,3

0,2 0,2

0,1 0,1

0,0 0,0

1,4 1,4

1,3 1,3

1,2 1,2

1,1 1,1

1,0 1,0

2,4 2,4

2,3 2,3

2,2 2,2

2,1 2,1

2,0 2,0

3,4 3,4

3,3 3,3

3,2 3,2

3,1 3,1

3,0 3,0

4,4 4,4

4,3 4,3

4,2 4,2

4,1 4,1

4,0 4,0

θ π ◦ ρ

0,0 0,0

0,1 0,1

0,2 0,2

0,3 0,3

0,4 0,41,0 1,0

1,1 1,1

1,2 1,2

1,3 1,3

1,4 1,42,0 2,0

2,1 2,1

2,2 2,2

2,3 2,3

2,4 2,43,0 3,0

3,1 3,1

3,2 3,2

3,3 3,3

3,4 3,44,0 4,0

4,1 4,1

4,2 4,2

4,3 4,3

4,4 4,4
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Figure: 1-round linear structure of Keccak-p*[w] ith the degrees of
freedom up to 512, where : variables; : algebraic degree at most 1; :
1; : 0.

Result: one-round linear structure with dimension up to 512.
All variables do not multiply with each other in the first round.
The θ effect is limited by forcing

∑
= 0 (or 1) in two columns.
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Preimage Attacks
An Example: 2-Round Keccak-512
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Figure: 2-round Keccak-512 preimage attack

1-round linear structure of 2× 64 = 128 bits variable.
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Preimage Attacks — Inverting One Round
Inverting χ : bi = ai + ai+1 · ai+2

Linearization: force either ai+1 or ai+2, or ai+1 + ai+2 to be
constant, e.g., try both ai+1 = 0 and ai+1 = 1.
(dimension reduces by 1; time complexity reduces when dimension
is big enough, otherwise increases by 21; space preserves)

Approximation: bi ' ai , by assuming ai+1 · ai+2 = 0, with
probability 3/4.
(time complexity increases by 4/3; space reduces to 3/4)

Bilinear structure: bi = ai + bi+1 · ai+2, when both bi and bi+1

are known.
(time and space preserve; knowledge of bi and bi+1 is limited by
target size and its shape in the 5× 5× 64 cube)
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Preimage Attacks
Partial linearization
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Figure: 3-round Keccak-384 preimage attack

1 fully linear round + 1 partial linear round + 1 inversion round.
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Preimage Attacks — Summary I

Rounds Target Complexity Reference

4
SHA3-384/512 2378/2506 [MPS13]
SHA3-224/256 2213/2251

[GLS16]SHAKE-128 2106/2106

3

SHA3-384/512 2322/2482

SHA3-256/SHAKE256 2151/2153 [LSLW17]
SHA3-224 297

[GLS16]SHAKE128 Practical

2
SHA3-512 2384

SHA3-384 289 [KMS18]
SHA3-224/256 Practical [NRM11]

1 SHA3-384/512 Practical [KRA18]
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Preimage Attacks — Summary II

Figure: The status of the Keccak Crunchy Crypto Pre-image Contest, as of
27/03/2019

Ref. https://keccak.team/crunchy_contest.html
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Collision Attack — The State of the Art

Round No. Target Complexity Reference
6 Keccak [r = 1440, c = 160] Practical [SLG17]
5 SHA3-256 [r = 1088, c = 512] Practical [GLL+19]
5 SHA3-224 [r = 1152, c = 448] Practical [SLG17]
5 SHAKE128 [r = 1344, c = 256] Practical [QSLG17]
5 Keccak [r = 640, c = 160] Practical [QSLG17]
4 SHA3-384 [r = 832, c = 768] 2147 [DDS13]
4 Keccak [r = 240, c = 160] Practical [KMNS13]
3 SHA3-512 [r = 576, c = 1024] Practical [DDS13]
3 SHA3-384 [r = 832, c = 768] Practical [DDS13]
1 Keccak [r = 40, c = 160] Practical [WE17]

Generally, attack becomes more difficult for smaller r and larger c.
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Collision Attacks — the Framework
(nr1 + nr2)-round collision attacks:

nr1-round connector: produces message pairs (M1,M2) s.t.

Rnr1 (M1||0c) + Rnr1 (M2||0c) = ∆SI , (Rnr1 : nr1 rounds)

nr1 = 1 [DDS13] −→ nr1 = 2 [QSLG17] −→ nr1 = 3 [SLG17] .
nr2-round differential: ∆SI → ∆SO ,
with first d bits of ∆SO being 0, i.e., collision.
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Collision Attack — Keccak Sbox Properties

P1: Given compatible I/O differences (δin, δout), the solution set

V = {x | S(x)⊕ S(x ⊕ δin) = δout}

forms an affine subspace of size 2, 4, or 8.

P2: Given the output difference δout , the compatible input differences

{δin | DDT(δin, δout) > 0}

contains at least 5 2-dimensional affine subspaces.
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1-round connector
α0

L

x

β0

χ

y

α1 (∆SI)

c
v, δ = 0

Difference phase: find a subspace of compatible input
difference β0(using P2), under constraint

lastc(α0 = L−1(β0)) = 0

Value phase: under fixed β0 from above, obtain a subspace of
input value x that leads to ∆SI (using P1), under constraint

lastc(L−1(x)) = 0
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2-Round Connectors
Extending the 1-round connector

1-round connector
α0

L

x

β0

χ

y

α1 (∆SI)

c
v, δ = 0

?
−→

2-round connector
α0

L

x

β0

Lχ

y

α1

c
v, δ = 0

L

z

β1

χ

α2 (∆SI)

Idea: Fully linearize the first round,
such that the first 1.5 rounds becomes linear, i.e.,

L ◦ Lχ ◦ L

by linearizing all χ in the first round.
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2-Round Connectors
S-box linearization

For an input subspace V = {0, 1, 4, 5} which is defined by
{x1 = 0, x3 = 0, x4 = 0}, the S-box is equivalent to the linear
transformation

y =


1 0 1 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 0 1

 · x

Problem: Full linearization allows dimension at most 2 out of 5 affine
subspaces. Hence, such linearization can be done at most once.

−→ non-full Sbox linearization
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3-Round Connectors
non-full Sbox linearization −→ partial 3-round connectors

α0 α2 β1 α1 β0 

zyx

Ez

EM

χ1χ0L L
- difference

- value

- equation system

(ΔSI)

E ź

+
Ey

Observation: not all Sboxes are active, and only the input values to
the active Sboxes of χ1 matter, which may come from active/in-active
Sboxes of χ0.

J. Guo Security of SHA-3 and Related Constructions FSE 2019 @ Paris 26 / 49



Partial Sbox Linearization I

(b0, b1, b2, b3, b4) = Sbox(a0, a1, a2, a3, a4)

fix a2 = 0 !

b0 = a0 + a1 · a2 = a0, and

b1 = a1 + a2 · a3 = a1 + a3.

This costs 1-bit linearization v.s. 3 bits for full linearization.
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Partial Sbox Linearization II

Table: #equations necessary to partially linearize the Sbox

non-active active
Mask U #equations DDT log2 #equations
1F(1/32) 3 (3) 1 4
0(1/32) 0 (3) 2 3

T (10/32) 1 (3) 3 2,3
others(20/32) 2 (3)

Lesser degrees of freedom are consumed for non-full Sbox
linearizations, could be used for fulfil Sboxes in the 3rd round.
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Collision Attacks — Searching for the Differentials
(nr1 + nr2)-round collision attacks:

high probability, e.g., forcing the differences in 2nd and 3rd
rounds of the trail in CP kernel
firstd(∆SO) = 0

Consumes as less as possible degrees of freedom, provided by the
connectors
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GPU Implementation for the bruteforce

∼ 228 (229) Keccak-f evaluations per second
on GPU GTX 970 (GTX 1070) v.s.
∼ 221 on CPUs.

Enables computation power up to 250.
Source code available: http://catf.crypto.sg
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Collision Attack — Summary I

Round No. Target Complexity Reference
6 Keccak [r = 1440, c = 160] Practical [SLG17]
5 SHA3-256 [r = 1088, c = 512] Practical [GLL+19]
5 SHA3-224 [r = 1152, c = 448] Practical [SLG17]
5 SHAKE128 [r = 1344, c = 256] Practical [QSLG17]
5 Keccak [r = 640, c = 160] Practical [QSLG17]
4 SHA3-384 [r = 832, c = 768] 2147 [DDS13]
4 Keccak [r = 240, c = 160] Practical [KMNS13]
3 SHA3-512 [r = 576, c = 1024] Practical [DDS13]
3 SHA3-384 [r = 832, c = 768] Practical [DDS13]
1 Keccak [r = 40, c = 160] Practical [WE17]

Practical: time complexity < 254.
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Collision Attack — Summary II

Figure: The status of the Keccak Crunchy Crypto Collision Contest, as of
27/03/2019

Ref. https://keccak.team/crunchy_contest.html
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Distinguishers — Zero-Sum
Zero-Sum Distinguisher
Given function/permutation f , find an input set X , s.t.

∑
x∈X x = 0

and
∑

x∈X f (x) = 0, i.e., the sums of input and output set are 0
simultaneously.

A linear space of dimension deg(f ) + 1 fulfils above.

Application to Keccak-f

| m rounds←−−−−−−−
backward

| t rounds←−−−−−−−−−−→
linear structure

| n rounds−−−−−−−→
forward

|

degree of χ: 2; degree of χ−1: 3
degree of n forward rounds: 2n; degree of m backward rounds: 3m

Required size of linear structure: 2 ·max(2n, 3m)
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2-round Linear Structure of Dimension up to 512
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Figure: With one backward round, 2-round Linear Structure of Dimension
up to 512
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3-round Linear Structure of Dimension up to 194
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Figure: With one backward round, 3-round Linear Structure of Dimension
up to 194
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Zero-Sum Distinguisher — Result Summary

#Rounds back. + l.s. +for. 3m, 2n Complexity
7 1+3+3 3, 8 29

8 2+3+3 9, 8 210

9 2+3+4 9, 16 217

10 3+3+4 27, 16 228

11 3+3+5 27, 32 233

12 3+3+6 27, 64 265

13 4+3+6 81, 64 282

14 4+3+7 81, 128 2129

15 5+2+8 243, 256 2257

Table: Summary of distinguishers on Keccak-f permutation
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Key Recovery — The targets I
KMAC,Keyak,Ketje

0

0

r

c

f f f f f ...

pad ⌊⋅⌋ L

output

absorbing squeezing

N||S K M||L||00

pad pad

Figure: KMAC processing one message block, K is processed as an
independent block before message, with
f = Keccak− p*[b = 1600, nr = 24].

Keccak-MAC: K ||M is as the message input of Keccak.
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Key Recovery — The targets II
KMAC,Keyak,Ketje

0 f

pad

K||Nonce

r

0 f0

pad

K||Nonce σi 

f1

Zi

r

⌊⋅⌋ρ 

Z0 σ0

...

(a) (b)

f

r

Z1 σ1

... ...

Figure: (a) Keyak; (b) Ketje.

Keyak takes Keccak-p*[b = 800, 1600]; Ketje takes
Keccak-p*[b = 200, 400, 800, 1600]
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Key Recovery — Cube Attacks and
Cube-Attack-Like Cryptanalysis I
Given the Boolean polynomial f (k0, . . . , kn−1, v0, . . . , vm−1) and a
monomial tI = vi1vi2 · · · vir , I = (i1, . . . , id), f can be written as

f (k0, . . . , kn−1, v0, . . . , vm−1) = tIpSI + q(k0, . . . , kn−1, v0, . . . , vm−1)

where
q does not contain tI

pSI is the superpoly of I in f
v ’s are cube variables, d is the dimension.

The cube sum is∑
(vi1 ,...,vir )∈CI

f (k0, . . . , kn−1, v0, . . . , vm−1) = PSI
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Key Recovery — Cube Attacks and
Cube-Attack-Like Cryptanalysis II
Cube Attack: PSI = L(k0, . . . , kn−1) is a linear polynomial.
Conditional Cube Attack: Depending on some (key-dependent) cube
variables, PSI is a linear polynomial.
Cube-Attack-Like: using na aux. variables, P ′ = L′(ki1 , . . . , kin′ ), with
n′ < n.

Find cube of size as large as possible, as many round as possible:
CON algebraic degree of m-round Keccak-p is 2m, prepend 1 ∼ 3

rounds and generate a linear space of dimension at least m.
usually the first round of Keccak-p is chosen to be linear
ultize tools like MILP to find (sub-) optimal choices of
conditions, and key variables s.t. [CON] fulfils.
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Key Recovery — Summary: MACs

Table: Summary of attacks on KMAC, and Keccak-MAC
Target Key Size Capacity Rounds Time (Data) Reference
KMAC128 128 256 7/24 276 [SGSL18]
KMAC256 256 512 9/24 2147

Keccak-MAC 128

256/512 7/24 272 [HWX+17]
768 7/24 275 [LBDW17]
1024 6/24 258.3

1024 6/24 240 [SGSL18]
1024 7/24 2111 [SG18]
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Key Recovery — Summary: AEs

Table: Summary of Attacks on Keyak and Ketje
Target Key Size Rounds Time (Data) Memory nonce-respected Reference

Lake Keyak

128 6/12 237 - Yes [DMP+15]
128 8/12 274 - No [HWX+17]
128 8/12 271.01 - Yes [SGSL18]
256 9/14 2137.05 - Yes

River Keyak 128 8/12 277 - Yes [SGSL18]

Ketje Major 128 7/13 283 - Yes [LBDW17]
128 7/13 271.24 - Yes [SGSL18]

Ketje Minor 128 7/13 281 - Yes [LBDW17]
128 7/13 273.03 - Yes [SGSL18]

Ketje SR v1 128 7/13 2115 250 Yes [DLWQ17]
128 7/13 291 - Yes [SGSL18]

FKD[1600] 128 9/- 290 - No [SGSL18]

Ketje Jr v1 96 5/13 236.86 218 Yes
[SG18]Ketje Jr v2 96 5/13 234.91 215 Yes

Ketje Sr v2 128 7/13 299 233 Yes
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pb, pc , pd , pe being 4 or 6 round Keccak-p
MITM and Linear Recurrence Attacks due to low algebraic degree and
linear rolling functions.
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Conclusion Remarks

In Summary:
5 and 4 rounds of SHA-3 can be attacked, w.r.t. collision and
preimage resistance, out of 24 rounds (huge security margin).
key-recovery attack works up to 9 rounds, intensive cryptanalysis
is necessary when weak permutation is used.

More information is available via: http://catf.crypto.sg/keccak

Thank You !
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PhD and Postdoc Positions

Topics cover anything in symmetric-key cryptography, including but
not limited to cryptanalysis (of Keccak).

Ph.D: 4-year program with full funding support of tuition fees
and living allowance.
Postdoc: 2-year contract with globally competitive salary, with
possibility of extension to more years.

More information is available at http://catf.crypto.sg, interested
candidates are encouraged to contact guojian@ntu.edu.sg
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