
Preparing Symmetric Crypto
for the Quantum World
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Preliminaries...

No quantum knowledge needed for following this talk



Outline

I Introduction
Motivation, scenarios and evolution

I Useful quantum tools
I Presentation of some results

• Building new useful quantum tool:
collision and k-xor algorithms

• Some quantum attacks (Simon +)
I Final conclusion and Open problems



Motivation



Cryptanalysis: Foundation of Confidence

I Ideal security defined by generic attacks (2|K|).
Does real security meet this ideal security?
Need of continuous security evaluation.

Any attack better than the generic one
is considered a “break”.

I We are often left with an empirical measure
of the security: cryptanalysis.
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Very Important Notion: Security Margin

If no attack is found on a given cipher, what can
we say about its robustness?

The security of a cipher is not a 1-bit information:
• Round-reduced attacks.
• Analysis of components.
⇒ determine and adapt the security margin.
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Very Important Notion: Security Margin

I Best attacks determine the security margin
⇒ Possibly with high complexities: find the
highest number of rounds reached.

I Allows to compare primitives.

I The estimates of security margin need to be
precise and correct in order to be meaningful.
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Post-Quantum Cryptography

Asymmetric (e.g. RSA):
Shor’s algorithm: Factorization in polynomial time
⇒ current systems not secure!
Solutions: lattice-based, code-based cryptography...

Symmetric (e.g. AES):
Grover’s algorithm: Exhaustive search2|K|→2|K|/2

Double key length for equivalent ideal security.
Much to learn about cryptanalysis when having
quantum computing available.
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Post-Quantum Cryptography

Problem for present existing long-term secrets.
⇒ start using quantum-safe primitives NOW.

Important tasks:
I Conceive the cryptanalysis algorithms for

evaluating the security of symmetric
primitives in the P-Q world.

I Use them to evaluate and design symmetric
primitives for the P-Q world.
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On Quantum Attacks

I Compare to best generic attack,

I generic attack is accelerated, so

I broken classical primitive might be unbroken
in a quantum setting:

e.g. a primitive might not have 256-bits security
against a classical adversary but might have 128-
bit security against a quantum one.
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Scenarios and Models



Considered Scenarios

I Model Q0

classical attacks with classical computers.

I Model Q1

Q0 + access to a quantum computer.

I Model Q2

Q1 + superposition queries to a quantum
cryptographic oracle (QCO).

I Model Q3

Q1 + superposition queries with the
differences of a secret key in a QCO.
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Model Q0

Nothing new here.
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Model Q1

I So far, the best we have obtained is a
quadratic speed-up, but it can be smaller:
• If a primitive is safe in Q0,

it will also be in Q1.

I Does this mean that (so far) the Q1

scenario/results are not interesting?

No!
safe = no attack better than generic attack
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Model Q1

In a post-quantum future:
I Classical or quantum surnames will disappear:

Expected security given by their best generic
attack (e.g. Grover).
And security margin? → determined by the
highest number of rounds cryptanalyzed with
any attack more performant than generic.

I Q1 results: important information needed for
determining the unique and future security
margin.
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Model Q2

Very powerful, BUT...

Many good reasons to study security in this
scenario:
I Simple: used in security proofs.
I Non-trivial: Many constructions still seem

resistant.
I Inclusive of all intermediate scenarios:

protocols, obfuscation, hybrid machines,
incompetent users...

11/57



Model Q2

Defined and used in many results:

[Zhandry12], [Boneh-Zhandry13], [Damg̊ard-
Funder-Nielsen-Salvail13], [Mossayebi-Schack16],
[Song-Yun17], Simon’s attacks, FX, AEZ...

An attack in this model ⇒ we need to be extra
careful when implementing the primitive in a
quantum computer.
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Model Q3

Super strong model:

Everything is broken [Roetteler-Steinwandt 15]

Too strong model!
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Another scenario classification

Scenario A) With big quantum memory or

Scenario B) quantum memory limited to poly(n)

The first one: interesting from a theoretical point
of view and for considering trade-offs,

The second one: more ”realistic” scenario.
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Evolution



First Results

Quantum Symmetric Cryptanalysis:

I Quantum analysis of CubeHash [Leurent 10]

I Simon on 3-round Feistel [Kuwakado Morii 10]

I Simon on Even-Mansour [Kuwakado Morii 12]

I Quantum MITM iterated ciphers [Kaplan14]

I Quantum Related-Key [Roetteler-Steinwandt15]
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Quantum Symmetric Cryptanalysis

I In 2015/2016:
[Kaplan-Leurent-Leverrier-NP16] Simon on modes/slide attacks.

[Kaplan-Leurent-Leverrier-NP16b] Diff/linear.

Many new results since: FX [Leander-May17], parallel multi-

preim. [Banegas-Bernstein17], Multicollision [Hosoyamada-Sasaki-

Xagawa17], Mitm Q1 [Hosoyamada Sasaki 18], DS Mitm Feistel

[Hosoyamada Sasaki 18], Miss-in-the-middle [Xie, Yang 18], Feistel

key-recovery [Dong, Wang 18], CCA on Feistel [Ito et al 19]...
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Recent activity from QUASYModo

I Efficient Collisions [Chailloux NP Schrottenloher Asiacrypt17],

I Quantum cryptanalysis of AEZ [Bonnetain SAC17]

I On modular additions [Bonnetain NP Asiacrypt 2018]

I k-xor problem [Grassi NP Schrottenloher Asiacrypt2018]

I AES quantum evaluation [Bonnetain NP Schrottenloher 18]

I On quantum slide attacks [Bonnetain NP Schrottenloher 18]

I Quantum security analysis of CSIDH[Bonnetain Schrottenloher18]

I Optimal merging the k-xor problem [NP Schrottenloher 19]

I Improved low-qubit hidden shift algorithms [Bonnetain 19]
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Some Useful Quantum Tools



Some Quantum Tools...

...that have been useful so far.

I Amplitude Amplification (AA) /Grover
I Quantum Counting
I Quantum Collisions
I Simon
I Kuperberg
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Amplitude Amplification (Grover’s generalization)

Exhaustive search:
Given f : {0, 1}n → {0, 1}, find one element
x ∈ {0, 1}n such that f(x) = 1.

I Classical complexity: Ω( 2n

|supp(f)|).

I Quantum complexity [Brassard-Hoyer 97]:

Ω(
√

2n

|supp(f)|) .

In detail, we will see later: O
(√

2n

|supp(f)|(sT + fT )
)

.
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Quantum Counting Algorithm

Distinguish a biased distribution:
Given a Bernouilli distribution, determine with
high probability whether it has a parameter
1/2 or 1/2 + ε.

I Classical complexity: O
(

1
ε2

)
.

I Quantum complexity:
[Brassard-Hoyer-Tapp 98] O

(
1
ε

)
.
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Quantum Collision Algorithms

Collision problem: Given a random function
H :{0, 1}n→ {0, 1}n, find x, y ∈ {0, 1}n with
x 6= y such that H(x) = H(y).

I Classical complexity: Ω(2n/2).
I Quantum complexity:

[Brassard-Hoyer-Tapp 97] O
(
2n/3

)
in

queries, in time and in quantum memory
→ scenario A. (Scenario B later)
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Simon’s algorithm

Simon’s problem:
Given f : {0, 1}n→{0, 1}n such that
∃s | f(x) = f(y) ⇐⇒ [x = y or x⊕ y = s],

find s.

I Classical complexity: Ω(2n/2).
I Quantum complexity [Simon 94]: Õ (n) .
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Kuperberg’s algorithm

Hidden Shift Problem with modular addition:
Let f , g be two injective functions, (G,+)

a group. Given the promise that there exists
s ∈ G such that, for all x, f(x) = g(x + s),
retrieve s.

I Classical complexity: Ω(2n/2).
I Quantum complexity:

[Kuperberg 05] 2Õ(
√
n).
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Some new Results
New useful Quantum Tools



Some New Useful Quantum Tools

I New Quantum Collision Algorithm
I Quantum K-xor Algorithms
I Multicollisions
I Grover-meets-Simon
I Simon-meets-Kuperberg
I Framework for quantizing classical attacks
I Quantumly efficient DDT equivalent
I Miss-in-the-middle search
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Collision Search

with A. Chailloux, A. Schrottenloher



Collision Search Problem

Given a random function H :{0, 1}n →
{0, 1}n, find x, y ∈ {0, 1}n with x 6= y such
that H(x) = H(y).

Many applications: e.g. generic attacks on hash
functions.

(Multi-target preimage search can be seen as a
particular case).
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Best known algorithms

Time Queries Qubits Classical
Memory

Pollard 2n/2 2n/2 0 O(n)

Grover 2n/2 2n/2 O(n) 0

BHT 22n/3* 2n/3 O(n)* 2n/3

Ambainis 2n/3 2n/3 2n/3 0
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Considered Model

I The same one as in the previous collision
quantum algorithms BUT we limit the amout of
quantum memory available to a small amount
O (n): scenario B instead of A.

I Available small quantum computers seem
like the most plausible scenario.

I We are interested in the theoretical algorithm
and we did not take into account yet
implementation aspects.
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Starting Point: BHT Algorithm

I Optimal number of queries,

I O (n) qubits (scenario B),

I But time?
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BHT: Summarized procedure

I Build a list L of 2n/3 elements (classical memory),

I Exhaustive search for finding one element that
collides: With AA, the number of iterations is:

( 2n

2n/3
)1/2 = 2n/3.

I Testing the membership with L for the
superposition of states costs 2n/3 with n qbits:

Time: 2n/3 + 2n/3(1 + 2n/3) ≈ 22n/3
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Can we improve this?

Let’s build the list L with distinguished points
e.g. H(xi) = 0u||z, for z ∈ {0, 1}n−u.

The cost of building the list is bigger: 2n/3+u/2.

The setup of AA is bigger: 2u/2

The membership test stays the same: |L| = 2n/3

BUT The number of iterations is smaller: 2n/3−u/2

Time: 2n/3+u/2 + 2n/3−u/2(2u/2 + 2n/3) ≈
22n/3−u/2 + 2n/3+u/2
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With optimal parameters

The cost will be optimized for a certain size of L:
2v 6= 2n/3.

Time: 2v+u/2 + 2
n−v−u

2 (2u/2 + 2v)

For v = n/5, u = 2n/5: Time: Õ
(
22n/5

)
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Comparison

Time Queries Qubits Classical
Memory

Pollard 2n/2 2n/2 0 O(n)

Grover 2n/2 2n/2 O(n) 0

BHT 22n/3 2n/3 O(n) 2n/3

Ambainis 2n/3 2n/3 2n/3 0

New algorithm 22n/5 22n/5 O(n) 2n/5
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Example of Applications

I Hash functions: Collision and Multi-
preimages time from 2n/2 to 22n/5 and 23n/7 (Q1).

Ex.- time and queries for n = 128:
Pollard rho= 264

vs
Ours = 251 with less than 1GB classical.

I Multi-user setting.
I Operation modes.
I Bricks for Cryptanalysis.
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About Parallelization

I What about comparison with parallel rho?
This algo provides new trade-offs.
For comparison, previous example n = 128:
Parallel rho= 251 with 213 processors
vs
Ours = 251 with less than 1GB classical.

I When both parallelized: up to 2n/3 processors
this algorithm is more time-efficient than
parallel rho.

34/57



Conclusion - Collision

New efficient collision search algorithm with small
quantum memory (nothing scary, new trade-offs):

First algorithm with less than 2n/2 computations
in scenario B.

Many applications in symmetric cryptography.

Open question: is it possible to meet the optimal
2n/3 in time with small quantum memory?
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Quantum Efficient Algorithms for the k-xor
Problem (and Update)

with L. Grassi, A. Schrottenloher



k-xor problem with random functions

Given query access to a random function
H : {0, 1}n → {0, 1}n, find x1, . . . , xk such
that H(x1)⊕ . . .⊕H(xk) = 0.

For us, equivalent to the case with k different
random functions.

Many applications (with k-sum, similar algorithms
apply), ex.: attacks on FSB, XLS, SWIFFT;
correlation attacks.
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The 3-xor problem

Find 3 elements that xor to 0: not much better
than collision in classical setting.

Classically, no exponential time acceleration, only
logarithmic:

Complexity of Õ (2)n/2.
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3-xor: Scenario B Algorithm

I 1st approach, distinguished point: 2v = 2n/8,
T = 23n/8

u n-u u n-u

0...0 0...0

: :

0...0 0...0

:

0...0 0...0

L1 L2

2v         x
i   

   
 
  2v         y

i   
   

 
  

I Intuition: With a memory of 2v + 2v

we obtain 22v potential collisions.
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3-xor: Scenario B Algorithm

I 1st approach: 2v = 2n/8, T = 23n/8

I 2nd approach,techniques linked to ”list merging”:
n-2u-t   u      u      t n-2u-t   u      u      t

0...0 0...0

: :

0...0 0...0

:

0...0  0...0   0...0

L1 L2

 0...0    x
1
    �

1 
   y

1 
   0...0  �

1

2v  0...0    x
i   

   �
i 
  2v  y

i 
    0...0  �

i

    
 
   0...0  

Improved time= 25n/14, with 2v = 2n/7.

I Exponentially better than collision, contrary to
classical! 39/57



3-xor: Scenario A Algorithm

I Same technique as before, but no need for a
common prefix of zeroes.

I This gives
QM= 2n/5 and Time= 23n/10.
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The k-xor algorithms

2 4 6 8 10 12 14 16 18 20
0

5 · 10−2
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

k

α
k

Classical [Wagner 02]
Scenario A
Scenario B

The time complexities are Õ (2αkn)
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k-xor algorithms: Very Recent results

I Related to dissection: partial solutions to
subproblems n′ < n, k′ < k and combining them.

I When optimal? Not intuitive at all! ⇒ Recursive
MILP program for optimality in both scenarios.

Can we reach better complexities than
Õ
(
2n/(blog2(k)c+2)

)
when k is not a power of 2

in scenario A? Can we obtain time complexities
better than classical for k ≥ 8 in scenario B?
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New Results: scenario B

5 10 15 20
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New Results: scenario A
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Conclusion - k-xor - Optimal Merging

I The quantum 3-xor problem is exponentially
easier than the quantum collision problem (in
both settings), contrary to classical.

I The time for solving the 3-xor problem in
scenario A beats the lower bound for
quantum collision of 2n/3

I For generic k, scenario B improves
Wagner for half the values, and scenario A
improves for all k (interpolated curve).
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Some Results
on Quantum Attacks



New Quantum Attacks

I Differential/Linear
I Simon-based
I Kuperberg-based
I Slide attacks
I DS-MITM

And dedicated analysis:
I FX and Feistel constructions
I Q2 attack on AEZ
I Q2 attack on Poly-1305
I AES Quantum analysis
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Simon and Kuperberg Attacks

with X. Bonnetain, M. Kaplan,
G. Leurent, A. Leverrier



Simon on Even-Mansour [Kuwakado Morii 12]

I [Even-Mansour 97] cipher: DT > 2n

x

k1

P

k2

Ek1,k2(x)

f(x) = EK(x)⊕ P (x) → f(x) = f(x⊕ k1)

Simon’s algo on f ⇒ k1 in O(n)
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[Kaplan-Leurent-Leverrier-NP 16]

Simon on most authentication modes + slide attacks

I For example encrypt-last-block CBC-MAC:

0

m1

Ek

m2

Ek

m3

Ek Ek′ τ

f : {0, 1} × {0, 1}n→ {0, 1}n

b, x 7→ CBCMAC(αb‖x) = Ek′
(
Ek
(
x⊕ Ek(αb)

))
.

CBCMAC(α1‖x⊕ Ek(α0)⊕ Ek(α1)) =

Ek′
(
Ek
(
(x⊕ Ek(α0)⊕ Ek(α1))⊕ Ek(α1)

))
= CBCMAC(α0‖x)

s = 1‖Ek(α0)⊕ Ek(α1) 48/57



[Kaplan-Leurent-Leverrier-NP 16]

Simon on most authentication modes + slide attacks

I For example encrypt-last-block CBC-MAC:

0

α0/α1

Ek

x

Ek Ek′ τ

f : {0, 1} × {0, 1}n→ {0, 1}n

b, x 7→ CBCMAC(αb‖x) = Ek′
(
Ek
(
x⊕ Ek(αb)

))
.

CBCMAC(α1‖x⊕ Ek(α0)⊕ Ek(α1)) =

Ek′
(
Ek
(
(x⊕ Ek(α0)⊕ Ek(α1))⊕ Ek(α1)

))
= CBCMAC(α0‖x)

s = 1‖Ek(α0)⊕ Ek(α1) 48/57



Simon and Grover on FX construction

The FX construction is a natural construction for
extending the key-length n⇒ 2n.

x

k1

Ek0

k2

Ek0,k1,k2(x)

[Leander May 17] Combined Simon with Grover:
→ broken in O(2n2n/2)
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Tweaking to resist Simon’s algo.?

I In [Alagic Russell 17] several proposals. Most
efficient: replace xor by modular additions.

I Hidden shift problem in Z/(N).

I No algorithm in polynomial time:
Kuperberg in 2O(

√
n)

I Up to what point do primitives resist?
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Motivation and results [Bonnetain-NP18]

I 4. Dimension symmetric primitives

I 1. More precise evaluation of Kuperberg’s
algorithm complexity+improvement

I 2. What about parallel modular additions?

I 3. New Quantum attacks (Feistel’s slide, FX)
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Improvement and Simulation

Our improvement: all the bits with one iteration.

O(n22
√

2 log2(3)n) ⇒ O(n2
√

2 log2(3)n)

Our simulations: 0.7× 21.8
√
n for recovering full s.

Code available: ask Xavier Bonnetain if interested.
xavier.bonnetain@inria.fr
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Results - Conclusion

I Improved Kuperberg’s algorithm and new
algorithm for parallel modular additions.

I State size needed for 128-bit security.
at least 5200 bits (but for FX)
⇒ not very realistic.

I Might be better to just avoid vulnerable
constructions, or try different patches.

I Recently: concrete security of some Isogeny-
based primitives [Bonnetain-Schrottenloher]
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Final Conclusion



General Conclusion (for now) 1/2

I No reason to panic, symmetric crypto seems
to be holding on well

I Bigger internal states?

I Ideas from quantum analysis might improve
classical analysis

I Many things yet to do to precisely evaluate
security, to find best attacks, to adjust
parameters...

54/57



General Conclusion (for now) 2/2

I What about Q2? No consensus:
Surprising-scary results vs useless model?

• IMHO: Very strong model but when possible,
better to avoid Q2 attacks: symmetric modus
operandi works well in part because we are never
too paranoid: (attacks on 2200 declare ciphers broken,...)

I At least: information worth knowing.

Aristotle?
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Open problems

I Propose an efficient AE mode Q2-safe
I New quantum attacks: QFT ?
I Quantum security evaluation of primitives(LW)
I Generic key-length extensions?
I Design of primitives with bigger state
I Time-memo Trade-offs for k-xor algorithms
I Evaluating quantum implementation of

algorithms
I ...
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Quantum-Safe Symmetric Primitives

Lots of things to do !

I And what about quantum asymmetric cryptanalysis??

Necessary to evaluate the concrete security of proposed primitives.

Possible links between both.

Many thanks to André Schrottenloher, Xavier Bonnetain, Anne Canteaut,
Gaetan Leurent, Anthony Leverrier...
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