
Comparative ASIC Benchmarking of a Group of NIST LWC
Candidates

Mustafa Khairallah, Thomas Peyrin and Anupam Chattopadhyay

NTU, Singapore

November 11, 2020

1 / 11

NIST LWC Call for Submissions

Submitted AEAD algorithms and optional hash function algorithms should perform sig-
nificantly better in constrained environments (hardware and embedded software plat-
forms) compared to current NIST standards. They should be optimized to be efficient
for short messages (e.g., as short as 8 bytes). Compact hardware implementations and
embedded software implementations with low RAM and ROM usage should be possible.
The performance on ASIC and FPGA should consider a wide range of standard cell
libraries. The algorithms should be flexible to support various implementation strate-
gies (low energy, low power, low latency). The performance on microcontrollers should
consider a wide range of 8-bit, 16-bit and 32-bit microcontroller architectures. For al-
gorithms that have a key, the preprocessing of a key (in terms of computation time and
memory footprint) should be efficient.

2 / 11

Benchmarking goal

I Compare the baseline performance of different designs?

I Optimize different designs?

I Rank different designs?

I Compare the optimized performance of different designs?

All Valid, but resources are finite.

3 / 11

Benchmarking goal

I Compare the baseline performance of different designs?

I Optimize different designs?

I Rank different designs?

I Compare the optimized performance of different designs?

All Valid, but resources are finite.

4 / 11

ASIC Flow

I Front-End: logic and gate level analysis: less accurate, fast, can include more
designs.

I Back-End: transistor level analysis, more accurate, slow and includes more details,
suitable for second degree analysis.

I Tape-Out: silicon level analysis, real life.

5 / 11

Challenges

I Many designs: 10 designs, 36 implementations, 576 design points.

I Late submissions: the majority of designs submitted very late, partly due to the
pandemic.

I Consequently, limited time.

I Different designers = different level of optimizations, different implementation
quality, . . .

6 / 11

Approach

I Design Space Exploration, Round 2: reduce accuracy (front-end), include many
designs, and many implementations, study different trade-offs.

I Optimization, Round 3: improve accuracy (back-end), optimize designs (work
with the designers on finding better implementations), protected implementations
(work with evaluation teams to implement secure implementations).

7 / 11

Ingredients

I Designs: Ascon (1), DryGASCON (1), Elephant (2), Gimli (7), PHOTON-Beetle
(1), Pyjamask (2), Romulus (5), Subterranean (2), TinyJAMBU (6) and Xoodyak
(8).

I Standard Cell Libraries: TSMC 65nm, FDSOI 28nm.

I Compiler: Synopsys Design Compiler Q-2019.

8 / 11

Best Results: TSMC 65nm with CCS circuit models
Energy×Area (Latency×Power×Area) in fJ.KGE, |A| = |M| = 16 Bytes

9 / 11

Best Results: TSMC 65nm with CCS circuit models
Energy×Area (Latency×Power×Area) in fJ.KGE, |A| = |M| = 1536 Bytes

10 / 11

Conclusions

I Subterranean ranks high on all metrics.

I Romulus and TinyJAMBU are more biased towards low area, energy consumption
and efficiency for short messages.

I Ascon, Gimli, and Xoodyak (alphabetically) come next for these metrics, but rank
higher for speed over long messages compared to their energy rankings.

I Next is DryGASCON, followed by PHOTON-Beetle and Elephant in most
categories.

I Pyjamask (with current implementations) is not suitable for constrained
unprotected implementations.

11 / 11

